Alginate microcapsule as a 3D platform for propagation and differentiation of human embryonic stem cells (hESC) to different lineages.
نویسندگان
چکیده
Human embryonic stem cells (hESC) are emerging as an attractive alternative source for cell replacement therapy since they can be expanded in culture indefinitely and differentiated to any cell types in the body. Various types of biomaterials have also been used in stem cell cultures to provide a microenvironment mimicking the stem cell niche(1-3). The latter is important for promoting cell-to-cell interaction, cell proliferation, and differentiation into specific lineages as well as tissue organization by providing a three-dimensional (3D) environment(4) such as encapsulation. The principle of cell encapsulation involves entrapment of living cells within the confines of semi-permeable membranes in 3D cultures(2). These membranes allow for the exchange of nutrients, oxygen and stimuli across the membranes, whereas antibodies and immune cells from the host that are larger than the capsule pore size are excluded(5). Here, we present an approach to culture and differentiate hESC DA neurons in a 3D microenvironment using alginate microcapsules. We have modified the culture conditions(2) to enhance the viability of encapsulated hESC. We have previously shown that the addition of p160-Rho-associated coiled-coil kinase (ROCK) inhibitor, Y-27632 and human fetal fibroblast-conditioned serum replacement medium (hFF-CM) to the 3D platform significantly enhanced the viability of encapsulated hESC in which the cells expressed definitive endoderm marker genes(1). We have now used this 3D platform for the propagation of hESC and efficient differentiation to DA neurons. Protein and gene expression analyses after the final stage of DA neuronal differentiation showed an increased expression of tyrosine hydroxylase (TH), a marker for DA neurons, >100 folds after 2 weeks. We hypothesized that our 3D platform using alginate microcapsules may be useful to study the proliferation and directed differentiation of hESC to various lineages. This 3D system also allows the separation of feeder cells from hESC during the process of differentiation and also has potential for immune-isolation during transplantation in the future.
منابع مشابه
Mesenchymal Stem/Stromal-Like Cells from Diploid and Triploid Human Embryonic Stem Cells Display Different Gene Expression Profiles
Background: Human ESCs-MSCs open a new insight into future cell therapy applications, due to their unique characteristics, including immunomodulatory features, proliferation, and differentiation. Methods: Herein, hESCs-MSCs were characterized by IF technique with CD105 and FIBRONECTIN as markers and FIBRONECTIN, VIMENTIN, CD10, CD105, and CD14 genes using RT-PCR technique. FACS was performed fo...
متن کاملReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کاملExpression of Endoderm and Hepatic Specific Genes after in vitro Differentiation of Human Embryonic Stem Cells
Background: Human embryonic stem cells (hESC), which are derived from the inner cell mass of the blastocysts, have been considered to be pluripotent cells. In this study we examine the differentiating potential of hESC into hepatocytes by characterization of the expression of endoderm and liver-specific genes. Methods: hESC were cultivated in suspension to form aggregates, the embryoid bodies. ...
متن کاملComparison of BAX and Bcl-2 Expression During Human Embryonic Stem Cell Differentiation into Cardiomyocytes and Doxorubicin-induced Apoptosis
Back ground: Although the cell differentiation is an inseparable part of development in multicellular organisms, the regulating molecular pathway of it still is not fully defined. In the other hand, apoptosis is a fundamental physiological process which plays an essential role in a variety of biological events during development. Moreover, recent studies have found that apoptosis shows several ...
متن کاملInduced Chondrogenic Differentiation of hESCs by hESC-Derived MSCs Conditioned Medium and Sequential 3D-2D Culture System
Background and Aims: It has been proven that human mesenchymal stem cells (MSCs) conditioned medium (hMSCs-CM) can influence human embryonic stem cells (hESCs) chondrogenic differentiation. In this study, we hypothesized that conditioned medium (CM) from hESCs-derived MSCs in a sequential 3D-2D culture system could facilitate the induction of chondrogenesis in hESCs. Materials and Methods: CM ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 61 شماره
صفحات -
تاریخ انتشار 2012